Estimating Missing Values from the General Social Survey: An Application of Multiple Imputation

نویسنده

  • David A. Penn
چکیده

Objectives. Most researchers who use survey data must grapple with the problem of how best to handle missing information. This article illustrates multiple imputation, a technique for estimating missing values in a multivariate setting. Methods. I use multiple imputation to estimate missing income data and update a recent study that examines the influence of parents’ standard of living on subjective well-being. Using data from the 1998 General Social Survey, two ordered probit models are estimated; one using complete cases only, and the other replacing missing income data with multiple imputation estimates. Results. The analysis produces two major findings: 1) parents’ standard of living is more important than suggested by the complete cases model, and 2) using multiple imputation can help to reduce standard errors. Conclusions. Multiple imputation allows a researcher to use more of the available data, thereby reducing biases that may occur when observations with missing data are simply deleted.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Pattern of Missing Data on Performance of Imputation Methods: An Example from National Data on Drug Injection in Prisons

Background Policy makers need models to be able to detect groups at high risk of HIV infection. Incomplete records and dirty data are frequently seen in national data sets. Presence of missing data challenges the practice of model development. Several studies suggested that performance of imputation methods is acceptable when missing rate is moderate. One of the issues which was of less concern...

متن کامل

چند رویکرد برخورد با مقادیر گمشده‌ متغیرهای کمی و بررسی اثر آنها بر نتایج حاصل از یک کارآزمایی‌ بالینی

Background and Objectives: A major challenge that affects the longitudinal studies is the problem of missing data. Missing in the data may result in the loss of part of the information which reduces the accuracy of the estimator and obtain the results will be biased and inaccurate. Therefore, it is necessary to evaluate the missing data mechanism from a longitudinal research and to consider thi...

متن کامل

Analyses of Sensitivity to the Missing-at-Random Assumption Using Multiple Imputation With Delta Adjustment: Application to a Tuberculosis/HIV Prevalence Survey With Incomplete HIV-Status Data

Multiple imputation with delta adjustment provides a flexible and transparent means to impute univariate missing data under general missing-not-at-random mechanisms. This facilitates the conduct of analyses assessing sensitivity to the missing-at-random (MAR) assumption. We review the delta-adjustment procedure and demonstrate how it can be used to assess sensitivity to departures from MAR, bot...

متن کامل

Multiple Imputation: An Application to Income Nonresponse in the National Survey on Recreation and the Environment

Multiple imputation is used to create values for missing family income data in the National Survey on Recreation and the Environment. We present an overview of the survey and a description of the missingness pattern for family income and other key variables. We create a logistic model for the multiple imputation process and to impute data sets for family income. We compare results between estim...

متن کامل

Accuracy evaluation of different statistical and geostatistical censored data imputation approaches (Case study: Sari Gunay gold deposit)

Most of the geochemical datasets include missing data with different portions and this may cause a significant problem in geostatistical modeling or multivariate analysis of the data. Therefore, it is common to impute the missing data in most of geochemical studies. In this study, three approaches called half detection (HD), multiple imputation (MI), and the cosimulation based on Markov model 2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007